Chaos in the one-dimensional gravitational three-body problem.
نویسندگان
چکیده
We have investigated the appearance of chaos in the one-dimensional Newtonian gravitational three-body system (three masses on a line with -1/r pairwise potential). In the center of mass coordinates this system has two degrees of freedom and can be conveniently studied using Poincare sections. We have concentrated in particular on how the behavior changes when the relative masses of the three bodies change. We consider only the physically more interesting case of negative total energy. For two mass choices we have calculated 18 000 full orbits (with initial states on a 100x180 lattice on the Poincare section) and obtained dwell time distributions. For 105 mass choices we have calculated Poincare maps for 10x18 starting points. Our results show that the Poincare section (and hence the phase space) divides into three well defined regions with orbits of different characteristics: (1) There is a region of fast scattering, with a minimum of pairwise collisions. This region consists of 'scallops' bordering the E=0 line, within a scallop the orbits vary smoothly. The number of the scallops increases as the mass of the central particle decreases. (2) In the chaotic scattering region the interaction times are longer, and both the interaction time and the final state depend sensitively on the starting point on the Poincare section. For both (1) and (2) the initial and final states consist of a binary + single particle. (3) The third region consists of quasiperiodic orbits where the three masses are bound together forever. At the center of the quasiperiodic region there is a periodic orbit discovered (numerically) by Schubart in 1956. The stability of the Schubart orbit turns out to correlate strongly with the global behavior.
منابع مشابه
A Novel Approach for Optimization of Transportation Problem in Chaos Environment
Nature is characterized by its chaotic behavior. Mathematics is considered one of the appropriate tools to achieve the best definition of possible its chaos variables and process. Classical mathematics deals with the numbers as static and meaningless, but chaos mathematics deals with it as dynamic evolutionary, and value- added. This paper attempts to introduce the transportation problem re...
متن کاملOptimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملOptimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملTimeseries of Determinisic Dynamic Systems
Starting from Renaissance rationality has dominated in the science. W. G. Leibnitz and I. Newton based foundations to mathematical and physical doctrine of determinism—everything in the nature is defined by few deterministic laws, and thus can be explained (computed) automatically from initial conditions. However, the 20th century made quite serious amendments to the core idea of determinism. I...
متن کاملStabilization of Chaotic Behavior in the Restricted Three-Body Problem
Henri Poincaré in his work on Celestial Mechanics underlined a possibility of chaotic behavior in threebody problem by the destruction of homoclinic contours. Later, an existence of transverse homoclinic points in the three-body problem was analytically verified. A well-known modification of the restricted three-body problem is that of Sitnikov [1960]. The Sitnikov problem takes place when two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 3 2 شماره
صفحات -
تاریخ انتشار 1993